您现在的位置:首页  师资队伍

盛康亮

来源:生命科学学院  发布时间:2022-06-16 访问次数:10


  • 邮箱:kangliang@ahu.edu.cn

    地址:安徽大学(磬苑校区)生命科学学院笃行北楼B411

    邮编230601



    1、科研简历:

    盛康亮,博士,副教授,硕士生导师。2011年毕业于安徽中医药大学中西医临床医学专业,获医学学士学位。2015年毕业于安徽医科大学药学专业,获理学硕士学位。2018毕业于合肥工业大学食品科学专业,获工学博士学位。20187月起任安徽大学生命科学学院。目前主持国家自然科学基金青年项目、安徽省自然科学基金青年项目、安徽省高校自然科学研究重点项目、江南大学食品科学与技术国家重点实验室开放基金以及安徽大学博士科研启动基金等项目。近5年来以第一作者或通讯作用在Journal of agricultural and food chemistryFood & FunctionInternational Journal of Food Science and TechnologyInternational Journal of Biological Macromolecules等国际权威期刊上发表SCI收录论文10篇。申请发明专利9项,授权发明专利1项。


    2研究方向

    1微生态与宿主健康的互作调控机制及干预疗效评价;

    2新型益生菌、益生元及后生元;

    3菌物科学与绿色功能食品。


    3承担科研项目情况

    1. 国家自然科学基金青年项目:嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila)胞外囊泡调控肠道微环境中巨噬细胞极化的分子机制,320000812021-2023,主持。

    2. 安徽省自然科学基金青年项目:原花青素通过重塑肠道菌群对阿尔茨海默病模型小鼠的神经保护作用及其机制研究,1908085QC1202019.07-2021.06,主持。

    3. 安徽省高校自然科学研究项目:嗜黏蛋白阿克曼氏菌 (A.muciniphila) DSS诱导小鼠溃疡性结肠炎的保护作用及机制,KJ2019A00402019.06-2021.05,主持。

    4. 安徽大学博士科研启动基金:基于肠道菌群对肠黏膜机械屏障影响探讨原花青素干预阿尔茨海默病模型小鼠作用机制研究,J010033162019.01-2021.12,主持。

    5. 江南大学开放基金:嗜黏蛋白阿克曼氏菌(A.muciniphila)在白藜芦醇改善肥胖小鼠脂代谢中的作用及其机制SKLF-KF-201920,立项,2019-2021,主持。


    4、主要教研项目:

    1)安徽省级教学研究项目:地方高校生物制药专业实践教学质量监控体系的研究,2019jyxm11172020-2021,主持。

    2)安徽省级质量工程:食品化学 线上课程(原MOOC),2020mooc0242021-2022,主持。


    5代表性论著

    5年来,以第一作者或通讯作者国际权威期刊上发表SCI收录论文10

    [1] Wu, X., Zhang, Q., Wang, Z., Xu, Y., Tao, Q., Wang, J., Sheng, K.*, Wang, Y*. (2022). Investigation of construction and characterization of carboxymethyl chitosan - sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing. International Journal of Biological Macromolecules.https://doi.org/10.1016/j.ijbiomac.2022.04.157. (*corresponding author)

    [2]Sheng, K., Yang, J., Xu, Y., Kong, X., Wang, J., & Wang, Y. (2022). Alleviation effects of grape seed proanthocyanidin extract on inflammation and oxidative stress in a d-galactose-induced aging mouse model by modulating the gut microbiota. Food & Function, 13(3), 1348-1359.https://doi.org/10.1039/d1fo03396d. (First author)

    [3]Sheng, K., Xu, Y., Kong, X., Wang, J., Zha, X., & Wang, Y. (2021). Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation, and Gut Microbiota Modulation. Journal of Agricultural and Food Chemistry, 69(49), 14810-14823. https://doi.org/10.1021/acs.jafc.1c03375. (First author, cover paper)

    [4]Sheng, K., Zhang, G., Kong, X., Wang, J., Mu, W., & Wang, Y. (2021). Encapsulation and characterisation of grape seed proanthocyanidin extract using sodium alginate and different cellulose derivatives. International Journal of Food Science and Technology, 56(12), 6420-6430. https://doi.org/10.1111/ijfs.15299. (First author)

    [5]Sheng, K., Zhang, G., Sun, M., He, S., Kong, X., Wang, J., . . . Wang, Y. (2020). Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation. Food & Function, 11(9), 7817-7829.https://doi.org/10.1039/d0fo01418d. (First author)

    [6]Sheng, K., He, S., Sun, M., Zhang, G., Kong, X.-W., Wang, J., & Wang, Y. (2020). Synbiotic supplementation containing Bifidobacterium infantis and xylooligosaccharides alleviates dextran sulfate sodium-induced ulcerative colitis. Food & Function, 11(5), 3964-3974. https://doi.org/10.1039/d0fo00518e. (First author)

    [7]Sheng, K., Zheng, H., Shui, S., Yan, L., Liu, C., & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74-81. https://doi.org/10.1016/j.postharvbio.2018.01.002. (First author)

    [8]Sheng, K., Shui, S., Yan, L., Liu, C., & Zheng, L. (2018). Effect of postharvest UV-B or UV-C irradiation on phenolic compounds and their transcription of phenolic biosynthetic genes of table grapes. Journal of Food Science and Technology-Mysore, 55(8), 3292-3302. https://doi.org/10.1007/s13197-018-3264-1. (First author)

    [9]Sheng, K., Shui, S., Yan, L., Yu, J., Hao, G., Qu, H., . . . Zheng, L. (2018). The beneficial effects of dietary grape supplementation on improving cognitive deficits in APP/PS1 double transgenic mice. Journal of Functional Foods, 49, 224-234. https://doi.org/10.1016/j.jff.2018.08.030. (First author)

    [10]Sheng, K., Qu, H., Liu, C., Yan, L., You, J., Shui, S., & Zheng, L. (2017). A comparative assess of high hydrostatic pressure and superfine grinding on physicochemical and antioxidant properties of grape pomace. International Journal of Food Science and Technology, 52(9), 2106-2114. https://doi.org/10.1111/ijfs.13489. (First author)